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To obtain further insight on possible power law generalizations of Boltzmann
equilibrium concepts, we consider stochastic collision models. The models are a
generalization of the Rayleigh collision model, for a heavy one dimensional
particle M interacting with ideal gas particles with a mass m ° M. Similar to
previous approaches we assume elastic, uncorrelated, and impulsive collisions.
We let the bath particle velocity distribution function to be of general form,
namely we do not postulate a specific form of power-law equilibrium. We show,
under certain conditions, that the velocity distribution function of the heavy
particle is Lévy stable, the Maxwellian distribution being a special case. We
demonstrate our results with numerical examples. The relation of the power
law equilibrium obtained here to thermodynamics is discussed. In particular
we compare between two models: a thermodynamic and an energy scaling
approaches. These models yield insight into questions like the meaning of tem-
perature for power law equilibrium, and into the issue of the universality of the
equilibrium (i.e., is the width of the generalized Maxwellian distribution func-
tions obtained here, independent of coupling constant to the bath).
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1. INTRODUCTION

Khintchine (1) revealed the relation between the Gaussian Central Limit
Theorem and the Boltzmann–Gibbs statistics. From a stochastic point of
view, we may see this relation by considering the velocity of a Brownian
particle. The phenomenological dynamical description of a Brownian motion,
is in terms of the Langevin equation V̇M=−cVM+g(t), where g(t) is a
Gaussian white noise term. Usually the assumption of Gaussian noise is



imposed on the Langevin equation to obtain a Maxwellian velocity distri-
bution describing the equilibrium of the Brownian particle. We may reverse
our thinking of the problem, the Gaussian noise is naturally expected based
on Central Limit Theorem arguments, and the latter leads to Maxwell’s
equilibrium. Similar arguments hold for a Brownian particle in an external
time independent binding force field, the Maxwell–Boltzmann equilibrium
is obtained in the long time limit only if the noise term is Gaussian.

However, the Gaussian Central Limit Theorem is nonunique. Lévy
and Khintchine (2) have generalized the Gaussian Central Limit Theorem,
to the case of summation of independent, identically distributed random
variables described by long tailed distributions. In this case Lévy distribu-
tions replace the Gaussian in generalized limit theorems. Hence it is natural
to ask (3–6) if a Lévy based statistical mechanics exist? And if so what is its
physical domain and its relation to thermodynamics. This type of questions
are timely due to the interest in power law generalizations of statistical
mechanics. (7–11) While Lévy statistics is used in many applications, (12–18) its
possible relation to a generalized form of equilibrium statistical mechanics
is still unclear.

As well known, Boltzmann used a kinetic approach for a dilute gas of
particles to derive the Maxwell velocity distribution (see details in ref. 19).
Thus, the kinetic approach can be used as a tool to derive equilibrium,
starting from nonequilibrium dynamics. For example, Ernst (20) and
Chernov and Lebowitz (21) show how the Maxwell equilibrium is obtained
from different types of collision models. Thus, the Maxwell equilibrium
transcends details of individual kinetic models. It is important to note that
in these works, important boundary and initial conditions are imposed on
the dynamics. (19–23) For example, the second moment of the velocity of the
particles is supposed to be finite, Eqs. (1.7) and (2.10) in ref. 20. A possible
domain of power law generalizations of Maxwell’s equilibrium, are the
cases where one does not impose ‘‘finite variance’’ initial and/or boundary
conditions.

A step beyond the Maxwellian velocity distribution was obtained in
the kinetic theory of inelastic systems. Extensive investigations, (24–29) using
the inelastic Maxwell model, or inelastic models for tracer diffusion, (30)

shows that initial Gaussian distributions of velocities are driven into power
law or stretched exponential distributions (however no direct relation to
Lévy statistics was obtained). Bobylev and Cercignani, (31) investigated a
nonlinear Boltzmann equation with an infinite velocity variance showing
that the solution exists, and obtaining certain bounds on it. In ref. 31 the
possibility of a relation between solutions of the Boltzmann equation and
the Lévy Central Limit Theorem was briefly pointed out. In ref. 32 I inves-
tigated a driven Maxwell model, using a nonlinear Boltzmann equation,

1538 Barkai



showing that steady state solutions of the model are Lévy stable. After
this manuscript was submitted, two additional publications emphasized
the relation between steady state solutions of kinetic models and Lévy
statistics. Pulvirenti and Toscani (33) showed that equilibrium in an inelastic
Kac model, under certain conditions yields a Lévy stable law. Zanette and
Montemurro (34) investigated thermal measurements of stationary nonequi-
librium power law systems, showing that Lévy statistics describes fluctua-
tions of a model thermostat. We note that Lévy distribution of velocities of
vortex elements was observed in turbulent flows and also from numerical
simulations by Min et al. (35) (see also refs. 36–39). In this case the mecha-
nism leading to Lévy statistics are long range interactions.

In this manuscript we will consider a simple kinetic approach to obtain
a generalization of Maxwell’s velocity distribution. Briefly we consider a
one dimensional tracer particle of mass M randomly colliding with gas
particles of mass m ° M. Two main assumptions are used: (i) molecular
chaos holds, implying lack of correlations in the collision process
(Stoszzahlansantz), and (ii) rate of collisions is independent of the energy of
the colliding particles, i.e., our model belongs to the family of Maxwell
models. Let the probability density function (PDF) of velocity of the gas
particles be f(ṽm). If f(ṽm) is Maxwellian, the model describes Brownian
type of motion for the heavy particle, the equilibrium being the Maxwell
distribution. (40–42) Since our aim is to investigate generalized equilibrium,
we do not impose the standard condition of Maxwellian velocity distribu-
tion for the bath particles. Our aim is to show, under general conditions,
that the equilibrium PDF of the tracer particle W(VM) is stable. Stable
means that wide classes of bath particles velocity PDFs f(ṽm), yield a
unique equilibrium for the tracer particle Weq(VM). Namely the equilibrium
velocity distribution Weq(VM) transcends the details of precise shape of
f(ṽm). One of those stable velocity distributions will turn out to be the
Maxwell velocity distribution.

To obtain an equilibrium we use two approaches which we call the
energy scaling approach and the thermodynamic approach. The energy
scaling approach is based on the assumption that an energy scale controls
the velocity distribution of the bath particles. This means that we assume

f(ṽm)=
1

`T/m
q(ṽm/`T/m), (1)

and q(x) is a nonnegative normalized function. Here T has similar meaning
as the usual temperature. From this general starting point stable equilib-
rium is derived for the tracer particle.
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In the thermodynamic approach we use a different argument. As well
known the equilibrium velocity distribution of a Brownian particle M
immersed in a fluid, is independent of the mass of the the fluid particles m.
Thus the heavy Brownian particle reaches an equilibrium which does not
depend on the mass of atoms or molecules in its surroundings. In the
thermodynamic approach we will impose a similar behavior on the tracer
particle M, imposing the condition that its equilibrium be independent of m.
This approach leads us to a generalized temperature concept. The main
motivation for this approach is to check if it makes sense to assume that
power law generalized equilibrium for the heavy particle are independent
from its coupling to the bath. Namely can we expect a universal behavior
for the power-law velocity distributions which are not sensitive to the
details of the model and to the interaction of tracer particle-bath particle.

It is shown that the two approaches yield stable Lévy equilibrium.
However, besides the Maxwellian case the two approaches yield different
types of equilibrium. Thus, according to our model generalized equilibrium
based on Lévy statistics naturally emerges, however this type of equilibrium
is different from the standard equilibrium. One cannot generally treat the
tracer particle equilibrium properties as separable from coupling to the
bath, and at the same time use standard temperature concept T. Namely,
Lévy velocity distribution are indeed the natural generalization of the
Maxwellian velocity distribution, however the width of the Lévy distri-
bution is not related in a simple way to temperature as found for the
Maxwellian case.

This manuscript is organizes as follows. In Section 2 I present the
model, and the linear Boltzmann equation under investigation. The time
dependent solution of the model is found in Fourier space and an exact
solution of the problem is found for a special case. In Section 3 the equi-
librium solution of the Boltzmann equation is obtained, this solution is
valid for any mass ratio E — m/M. In Section 4 the Maxwell Velocity
distribution is derived. The thermodynamic approach is considered in
Section 5 and the energy scaling approach in Section 6. Throughout this
work numerically exact solutions of the model are compared with asymp-
totic solution obtained in the limit of weak collisions E Q 0. We end with a
brief summary. A very brief summary of part of our results appeared in
ref. 32.

2. MODEL AND TIME DEPENDENT SOLUTION

We consider a one dimensional tracer particle with the mass M
coupled with bath particles of mass m. The tracer particle velocity is VM. At
random times the tracer particle collides with bath particles whose velocity
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is denoted with ṽm. Collisions are elastic hence from conservation of
momentum and energy

V+
M=t1V−

M+t2 ṽm, (2)

where

t1=
1 − E

1+E
t2=

2E

1+E
(3)

and E — m/M is the mass ratio. In Eq. (2) V+
M (V−

M) is the velocity of the
tracer particle after (before) a collision event. The duration of the collision
events is much shorter than any other time scale in the problem. The colli-
sions occur at a uniform rate R independent of the velocities of colliding
particles. The probability density function (PDF) of the bath particle
velocity is f(ṽm). This PDF does not change during the collision process,
indicating that re-collisions of the bath particles and the tracer particle are
neglected.

We now consider the equation of motion for the tracer particle velocity
PDF W(VM, t) with initial conditions concentrated on VM(0). Standard
kinetic considerations yield

“W(VM, t)
“t

=− RW(VM, t)+R F
.

−.

dV−
M F

.

−.

dṽm W(V−
M, t) f(ṽm)

× d(VM − t1V−
M − t2 ṽm), (4)

where the delta function gives the constrain on energy and momentum
conservation in collision events. Us-usual the first (second) term, on the
right hand side of Eq. (4), describes a tracer particle leaving (entering)
the velocity point VM at time t. Equation (4) yields the forward master
equation, also called the linear Boltzmann equation

“W(VM, t)
“t

=−RW(VM, t)+
R
t1

F
.

−.

dṽm W 1VM − t2 ṽm

t1

2 f(ṽm). (5)

This equation is valid for t1 ] 0 namely E ] 1. In Eq. (5) the second term
on the right hand side is a convolution in the velocity variables, hence we
will consider the problem in Fourier space. Let Wa (k, t) be the Fourier
transform of the velocity PDF

Wa (k, t)=F
.

−.

W(VM, t) exp(ikVM) dVM, (6)
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we call Wa (k, t) the tracer particle characteristic function. Using Eq. (5), the
equation of motion for Wa (k, t) is a finite difference equation

“Wa (k, t)
“t

=−RWa (k, t)+RWa (kt1, t) f̄(kt2), (7)

where f̄(k) is the Fourier transform of f(ṽm). In Appendix A the solution
of the equation of motion Eq. (7) is obtained by iterations

Wa (k, t)= C
.

n=0

(Rt)n exp(− Rt)
n!

e ikVM(0) t
n
1Pn

i=1 f̄(ktn − i
1 t2), (8)

with the initial condition Wa (k, 0)=exp[ikVM(0)]. Similar analysis for the
case t1=0 shows that Eq. (8) is still valid with f̄(ktn − i

1 t2)=f̄(k) dni and
tn

1=dn0 where dni is the Kronecker delta.
The solution Eq. (8) has a simple interpretation. The probability that

the tracer particle has collided n times with the bath particles is given
according to the Poisson law

Pn(t)=
(Rt)n

n!
exp(− Rt), (9)

reflecting the assumption of uniform collision rate. Let Wn(VM) be the PDF
of the tracer particle conditioned that the particle experiences n collision
events. It can be shown that the Fourier transform of Wn(VM) is

Wan(k)=e ikVM(0) t
n
1Pn

i=1 f̄(ktn − i
1 t2). (10)

Thus Eq. (8) is a sum over the probability of having n collision events in
time interval (0, t) times the Fourier transform of the velocity PDF after
exactly n collision event

Wa (k, t)= C
.

n=0
Pn(t) Wan(k). (11)

It follows immediately that the solution of the problem is

W(VM, t)= C
.

n=0
Pn(t) Wn(VM), (12)

where Wn(VM) is the inverse Fourier transform of Wan(k) Eq. (10).
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Remark 1. The history of the model and its relatives (e.g., refs. 44
and 48) for the case when f(ṽm) is Maxwellian is long. Rayleigh, who
wanted to obtain insight into the Boltzmann equation, investigated the
limit E ° 1. This important limit describes dynamics of a heavy Brownian
particle in a bath of light gas particles, according to the Rayleigh equa-
tion. (40) More recent work considers this model for the case where an
external field is acting on the tracer particle, for example in the context of
calculation of activation rates over a potential barrier. (42, 43) In the Rayleigh
limit of E Q 0 one obtains the dynamics of the Kramers equation, describ-
ing Brownian motion in external force field. Investigation of the model
for the case where collisions follow a general renewal process (i.e., non-
Poissonian) was considered in ref. 45. Related model was recently inves-
tigated by Biben et al. (46) for inelastic hard spheres M moving in a bath
modeled by hard spheres m. The supply of energy from the bath to the
inelastic particles mimics dynamics of a driven dissipative system.

2.1. An Example: Lévy Stable Bath Particle Velocities

In the classical works on Brownian motion the condition that bath
particle velocity distribution is Maxwellian is imposed. As a result one
obtains an equilibrium Maxwellian distribution for the tracer particle (i.e.,
detailed balance is imposed on the dynamics). This behavior is not unique
to Gaussian process, in the sense that if we choose a Lévy stable law to
describe the bath particle velocity PDF, the tracer particle will obtain an
equilibrium which is also a Lévy distribution. This property does not
generally hold for other choices of bath particle velocity PDFs.

To see this let the PDF of bath particle velocities be a symmetric Lévy
density, in Fourier space

f̄(k)=exp 5−
Aa |k|a

C(1+a)
6 , (13)

and 0 < a [ 2. The special case a=2 corresponding to the Gaussian PDF.
We will discuss later the dependence of the parameter Aa in Eq. (13) on
mass of bath particles m and on a generalized temperature concept. Using
Eqs. (8) and (13) we obtain

W(VM, t)= C
.

n=0

e−Rt(Rt)n

n!
1

[Agn
a(E)]1/a

la
3[VM − VM(0) tn

1]
[Agn

a(E)]1/a
4 , (14)

where la(x) is the symmetric Lévy density whose Fourier pair is

l̄a(k)=exp(−|k|a), (15)
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A=Aa/C(1+a), and

gn
a(E) — ta

2

1 − tan
1

1 − ta
1

. (16)

Later we will use the n Q . limit of Eq. (16)

g.

a (E)=
(2E)a

(1+E)a − (1 − E)a
, (17)

and the small E behavior

g.

a (E) ’
2a − 1

a
Ea − 1. (18)

From Eq. (14) we see that for all times t and for any mass ratio E, the
tracer particle velocity PDF is a sum of rescaled bath particle velocities
PDFs. In the limit t Q . a stationary state is reached

Weq(VM)=
1

[Ag.

a (E)]1/a
la
3 VM

[Ag.

a (E)]1/a
4 , (19)

or in Fourier space

Waeq(k)=exp[− Ag.

a (E) |k|a]. (20)

Thus the distribution of ṽm and VM differ only by a scale parameter. For
non-Lévy PDFs of bath particles velocities this is not the case: the distri-
bution of VM differs from that of ṽm. Note that for a=1, g.

1 (E)=1 hence
the equilibrium velocity distribution Eq. (19) becomes independent of the
mass M of the heavy particle (assuming A is independent of M).

3. EQUILIBRIUM

In the long time limit, t Q . the tracer particle characteristic function
reaches an equilibrium

Waeq(k) — lim
t Q .

Wa (k, t). (21)
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This equilibrium is obtained from Eq. (8). We notice that when Rt Q .,
Pn(t)=(Rt)n exp(−Rt)/n! is peaked in the vicinity of OnP=Rt hence it is
easy to see that

Waeq(k)= lim
n Q .

Pn
i=1 f̄(ktn − i

1 t2). (22)

In what follows we investigate properties of this equilibrium.
We will consider the weak collision limit E Q 0. This limit is important

since number of collisions needed for the tracer particle to reach an equi-
librium is very large. Hence in this case we may expect the emergence of a
general equilibrium concept which is not sensitive to the precise details of
the velocity PDF f(ṽm) of the bath particles.

Remark 1. According to Eq. (10), after a single collision event the
PDF of the tracer particle in Fourier space is Wa1(k)=f̄(kt2) provided that
VM(0)=0. After the second collision event Wa2(k)=f̄(kt1t2) f̄(kt2) and
after n collision events

Wan(k)=Pn
i=1 f̄(ktn − i

1 t2). (23)

This process is described in Fig. 1, where we show Wan(k) for n=1, 3, 10,
100, 1000. In this example we use a uniform distribution of the bath par-
ticles PDF Eq. (48), with E=0.01 and T=1. After roughly 100 collision
events the characteristic function Wan(k) reaches a stationary state, which as
we will show is well approximated by a Gaussian (i.e., the Maxwell velocity
PDF is obtained).

Remark 2. The equilibrium described by Eq. (22) is valid for a
larger class of collision models provided that two requirements are
satisfied. To see this consider Eq. (12), this equation is clearly not limited
to the model under investigation. For example if number of collisions is
described by a renewal process, Eq. (12) is still valid (however generally
Pn(t) is not described by the Poisson law). The important first requirement
is that in the limit t Q . Pn(t) is peaked around n Q ., and that Pn(t) is
not too wide (any renewal process with finite mean time between successive
collision events satisfies this condition). The second requirement is that
re-collisions of the bath particles and the tracer particle are not important.
This assumption is important since without it the simple form of Wan(k) is
not valid, and hence also Eq. (22). Physically, this means that the bath
particles maintain their own equilibrium throughout the collision process,
namely we require a fast relaxation to equilibrium of the bath particles.
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Fig. 1. We show the dynamics of the collision process: the tracer particle characteristic
function, conditioned that exactly n collision events have occurred, Wan(k) versus k. The veloc-
ity PDF of the bath particle is uniform and E=0.01. We show n=1 (top left), n=3 (top
right), n=10 (bottom left) and n=100 n=1000 (bottom right). For the latter case we have
Wa100(k) 4 Wa1000(k), hence the process has roughly converged after 100 collision events. The
equilibrium is well approximated with a Gaussian characteristic function indicating that a
Maxwell–Boltzmann equilibrium is obtained.

Remark 3. The problem of analysis of the equilibrium Eq. (22) is
different from the classical mathematical problem of summation of inde-
pendent identically distributed random variables. (2) In that case the scaled
sum Xn=;n

i=1 xi/n1/a in the limit n Q . is considered. The characteristic
function of Xn is ḡ(k/n1/a)n, where ḡ(k) is the characteristic function of xi.
In contrast the rescaling of k obtained here in Eq. (22), we have k Q

ktn − i
1 t2. This means that (i) we are treating a problem of summation of

independent, though nonidentical random variables and (ii) the scaling
with n, derived from the dynamics of the model, differs from the n1/a

scaling found in the standard problem of summation of random variables. (2)

Remark 4. If m=M we find Waeq(k)=f̄(k), this behavior is expected
since in this strong collision limit a single collision event is needed for
relaxation of tracer particle to equilibrium. This trivial equilibrium is not
stable in the sense that perturbing f̄(k) yields a new equilibrium for the
tracer particle.
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4. MAXWELL VELOCITY DISTRIBUTION

We consider the case where all moments of f(ṽm) are finite and that
the scaling condition Eq. (1) holds. The second moment of the bath particle
velocity is

Oṽ2
mP=

T
m

F
.

−.

x2q(x) dx. (24)

Without loss of generality we set >.

−.
x2q(x) dx=1. The scaling behavior

Eq. (1) and the assumption of finiteness of moments of the PDF yields

Oṽ2n
m P=1T

m
2n

q2n, (25)

where the moments of q(x) are defined according to

q2n=F
.

−.

x2nq(x) dx, (26)

and we assume that odd moments of q(x) are zero. Thus the small k
expansion of the characteristic function is

f̄(k)=1 −
Tk2

2m
+q4

1T
m
22 k4

4!
+O(k6). (27)

For simplicity we consider only the first three terms in the expansion in
Eq. (27), we will soon consider the higher order terms in the expansion
describing moments beyond the fourth.

We now obtain the velocity distribution of the tracer particle using
Eq. (22)

ln[Waeq(k)]= lim
n Q .

C
n

i=1
ln[f̄(ktn − i

1 t2)]. (28)

Inserting Eq. (27) in Eq. (28) we obtain

ln[Waeq(k)]=−
T

2m
g.

2 (E) k2+
q4 − 3

4!
1T

m
22

g.

4 (E) k4+O(k6). (29)

When E is small we find using Eq. (18)

ln[Waeq(k)]=−
Tk2

2M
+1 T

M
22 q4 − 3

4!
2Ek4+O(k6). (30)
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It is important to see that the k4 term approaches zero when E Q 0. Hence
we find

lim
E Q 0

ln[Waeq(k)]=−
Tk2

2M
, (31)

inverting to velocity space we obtain the Maxwell velocity PDF

lim
E Q 0

Weq(VM)=
`M

`2pT
exp 1−

MV2
M

2T
2 . (32)

We see that the parameters q2n with n > 1 are the irrelevant parameters of
the problem, and hence the Maxwell distribution is stable in the sense that
it does not depend on the detailed shape of f(ṽm).

To complete the proof we will show that the k6, k8 and higher order
terms in Eq. (30) also approach zero when E Q 0. Let õm, 2n (oM, 2n) be the
2nth cumulant of bath particle (tracer particle) velocity. The cumulants
describing the bath particle are related to the moments q2n in the usual way
õm, 2=T/m, õm, 4=(q4 − 1)(T/m)2, etc. Then using Eq. (22) one can show
that

oM, 2n=g.

2n(E) õm, 2n. (33)

From the scaling function Eq. (1) we have õm, 2n=c2nTn/mn, where c2n are
dimensionless parameters which depend on f(ṽm), n=1, 2,..., e.g., c2=1,
c4=q4 − 1, etc. The parameters c2n for n > 1 are the irrelevant parameters
of the model in the limit of weak collisions. To see this note that when
E Q 0 we have

oM, 2n=(T2/M) dn1. (34)

Thus, besides the second cumulant, all cumulants of the tracer particle
velocity distribution function are zero. As well known the cumulants of the
Gaussian PDF with zero mean are all zero besides second. Equation (34)
shows that the tracer particle reached the Maxwell equilibrium.

Remark 1. Consider the case where the second moment of bath
particles velocity Oṽ2

mP is finite, but that higher order moments diverge.
Using the scaling condition Eq. (1) the small k expansion of the bath par-
ticle characteristic function is

f̄(k) ’ 1 −
Tk2

2m
+qb

1T
m
2b/2 |k|b

C(1+b)
+O(k4) (35)
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and 2 < b < 4. Using Eqs. (18) and (28), we find in the limit of small E

ln[Waeq(k)]=−
Tk2

2M
+

qb

C(1+b)
1 T

M
2b/2 2b − 1

b
Eb/2 − 1 |k|b+O(k4). (36)

The interesting thing to notice is that the |k|b term approaches zero when
E Q 0. Hence also for this case Maxwell velocity distribution is obtained for
the tracer particle. Note that in this case moments of the velocity of the
tracer particle are not described well by moments of the Maxwell distribu-
tion (i.e., deviation between Maxwell distribution, and exact velocity dis-
tribution, are expected in the tails of the velocity distribution |VM | Q .).
Note that similar behavior is found for the Gaussian Central Limit
Theorem, (2) convergence of the sum of independent, identically, distributed
random variables, to Gaussian law is obtained if the second moment of the
random variables is finite (i.e., higher order moments may diverge).

Remark 2. As expected when the scaling condition Eq. (1) is not
satisfied we do not obtain the Maxwell equilibrium. We may ask if Gaussian
(though not necessarily Maxwellian) velocity PDFs are obtained if we
do not impose the scaling condition. We note that it is not sufficient to
demand that velocity PDF f(ṽm) has finite second moment (or even
all moments) to obtain a Gaussian equilibrium. An example is the case
Oṽ4

mP 3 1/m3 where the k4 term survives the limit E Q 0.

5. THERMODYNAMIC APPROACH

In this section the thermodynamic approach is used, imposing the
condition that the equilibrium of the tracer particle, i.e., Waeq(k), is inde-
pendent of the mass of the bath particles m. As well known the stationary
velocity distribution of a Brownian particle in thermal equilibrium with its
surrounding fluid is independent of the mass of the bath particles. Our aim
is to find the conditions for such a behavior for a wider class of equilibrium
(i.e., beyond the Maxwell distribution). We call this approach a thermo-
dynamic approach since a thermodynamic system A (the tracer particle)
left in thermal contact with system B (the bath particles) obtains a thermal
equilibrium which does not depend on the coupling constant to the bath or
the mass of the bath particles.

5.1. Lévy Equilibrium

We now assume that the bath particle velocity PDF is even with zero
mean, and that it decays like a power law P(ṽm) 3 |ṽm |−(1+a) when ṽm Q .
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where 0 < a < 2. In this case the variance of the bath particle velocity dis-
tribution diverges. We use the small k expansion of the bath particle char-
acteristic function

f̄(k)=1 −
Aa |k|a

C(1+a)
+

B |k|b

C(1+b)
+o(|k|b) (37)

with a < b [ 2a. Using Eq. (28) we find

ln[Waeq(k)]

=˛ −
Aa

C(1+a)
g.

a (E) |k|a+
B

C(1+b)
g.

b (E) |k|b b < 2a

−
Aa

C(1+a)
g.

a (E) |k|a+5 B
C(1+2a)

−
A2

2C2(1+a)
6 g.

2a(E) |k|2a b=2a

(38)

where terms of order higher than |k|b are neglected. Using Eq. (18) we
obtain in the limit E Q 0

ln[Waeq(k)]

’ ˛ −
Aa

C(1+a)
1 m

M
2a − 1 2a − 1

a
|k|a

+
B

C(1+b)
1 m

M
2b − 1 2b − 1

b
|k|b b < 2a

−
Aa

C(1+a)
1 m

M
2a − 1 2a − 1

a
|k|a

+5 B
C(1+2a)

−
A2

2C2(1+a)
61 m

M
22a − 1 22a − 1

2a
|k|2a b=2a.

(39)

To obtain an equilibrium we use the thermodynamical argument. We
require that equilibrium velocity PDF of the tracer particle M be indepen-
dent of the mass of the bath particle m. This condition yields

Aa=
Ta

ma − 1 , (40)

where we are forced to introduce the generalized Ta, whose units are
Kga − 1Mta/Seca. An additional requirement is needed to obtain a unique
equilibrium (i.e., an equilibrium which does not depend on details of bath
particle velocity PDF like B): terms beyond the |k|a term in Eq. (39) must
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vanish in the limit E Q 0. This occurs for bath particles velocity PDFs
f(ṽm) which satisfy the condition

B 3
1

mh
(41)

and h < b − 1. Using this condition we obtain

lim
E Q 0

ln[Waeq(k)]=−
Ta2a − 1

C(1+a) aMa − 1 |k|a, (42)

hence Lévy type of equilibrium is obtained

lim
E Q 0

Weq(VM)=5C(1+a) Mg (a − 1)

Ta

61/a

la
35C(1+a) Mg (a − 1)

Ta

61/a

VM
4 (43)

where Mg=Ma1/(a − 1)/2 is the renormalized mass. For a=2 the Maxwell
PDF Eq. (32) is recovered and Mg=M.

From physical requirements we note that our results are valid only
when 1 < a [ 2. If a=1 the velocity PDF becomes independent of the mass
of the tracer particle, while when a < 1 the heavier the tracer particle the
faster its motion (in statistical sense). This implies that imposing the condi-
tion of independence of the heavy tracer particle velocity PDF on the mass
of the bath particles m, based on the thermodynamic argument, is most
likely not the correct path.

Remark 1. The domain of attraction of the Lévy equilibrium we
find, Eq. (43) does not include all power law distribution with a < 2.
Consider for example

f̄(k)=
1
2
3exp 5−

2Ta |k|a

ma − 1C(1+a)
6+exp 1−

T2k2

m
24 , (44)

hence the gas particle velocity distribution in this case is a sum of a Gaussian
and a Lévy distributions. The small k expansion of Eq. (44) is

f̄(k)=1 −
Ta |k|a

ma − 1C(1+a)
−

T2k2

2m
· · · , (45)

where we consider 1 < a < 2. Using Eqs. (37) and (45) we find b=2, while
comparing Eq. (41) and Eq. (45) yields h=1. Now the condition h < b − 1
does not hold, and hence the Lévy equilibrium Eq. (43) is not obtained.
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Interestingly, one can show that for this case one obtains an equilibrium
characteristic function Waeq(k) which is a convolution of a Lévy PDF and a
Gaussian PDF. I suspect that this type of equilibrium is not limited to this
example.

5.2. Numerical Examples

We now investigate numerically exact solutions of the problem, and
compare these solutions to the stable equilibrium which becomes exact
when E Q 0. Our numerical examples yield: (i) information on the conver-
gence rate to stable equilibrium, and (ii) they also investigate the question
what finite small values of E yield an equilibrium which is well approxi-
mated by a stable equilibrium.

5.2.1. Maxwell Statistics

First consider the Maxwellian case. We investigate three types of bath
particle velocity PDFs:

(i) The exponential

f(ṽm)=
`2m

2 `T2

exp 1−
`2m |ṽm |

`T2

2 , (46)

which yields

f̄(k)=
1

1+
T2k2

2m

. (47)

(ii) The uniform PDF

f(ṽm)=˛= m
12T2

if |ṽm | < =3T2

m

0 otherwise

(48)

which yields

f̄(k)=
sin 1=3T2

m
k2

=3T2

m
k

. (49)
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(iii) The Gaussian PDF

f̄(k)=exp 1−
k2T2

2m
2 . (50)

The small k expansion of Eqs. (47,49,50) is f̄(k) ’ 1 − k2T2/(2m)+ · · · ,
indicating that the second moment of velocity of bath particles Oṽ2

mP is
identical for the three PDFs.

To obtain numerically exact solution of the problem we use Eq. (22)
with large though finite n. In all our numerical examples we used M=1
hence m=E. Thus for example for the uniform velocity PDF Eq. (49) we
have

Waeq(k) 4 exp ˛ C
n

i=1
ln r= E

3T2

sin 1k =3T2

m
11 − E

1+E
2n − i 2E

1+E
2

k 11 − E

1+E
2n − i 2E

1+E

sˇ . (51)

To obtain equilibrium we increase n for a fixed E and temperature until a
stationary solution is obtained.

According to our analytical results the bath particle velocity PDFs
Eqs. (46), (48), and (50), belong to the domain of attraction of the
Maxwellian equilibrium. In Fig. 2 we show Waeq(k) obtained from numeri-
cal solution of the problem. The numerical solution exhibits an excellent
agreement with Maxwell’s equilibrium. Thus details of the precise shape of
velocity PDF of bath particles are unimportant, and as expected the
Maxwell distribution is stable. We note that the convergence rate to equi-
librium depends on the value of k. To obtain the results in Fig. 2, I used
E=0.01, T2=2, M=1, and n=2000. For examples shown below, much
larger values of n and smaller values of E, are needed to obtain a good fit to
the Lévy equilibrium.

5.2.2. Lévy Statistics

We now consider four power law PDFs satisfying f(ṽm) 3 |ṽm |−5/2,
namely a=3/2.

(i) Case 1 we choose

f(ṽm)=
N1

(1+c1 |ṽm |)5/2 , (52)
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Fig. 2. The equilibrium characteristic function of the tracer particle, Waeq(k) versus k. We
consider three types of bath particles velocity PDFs (i) exponential (squares), (ii) uniform
(circles), and (iii) Gaussian (diamonds). The velocity distribution of the tracer particle M is
well approximated by Maxwell’s distribution plotted as the solid curve Waeq(k)=exp(− |k|2).
For the numerical results I used: M=1, T2=2, n=2000, and E=0.01.

with c1=(3p)2/3 m1/32−1(T3/2)2/3 and N1=3c1/4. The characteristic func-
tion is given in terms of a generalized Hyper-geometric function (47)

f̄(k)=
4N1

3c5/2
1

3c3/2
1 1F2

11; −
1
4

,
1
4

; −
k2

4c2
1

2

− |k|3/2
`2p 5cos 1 k

c1

2+Sign(k) sin 1 k
c1

264 . (53)

(ii) Case 2

f(ṽm)=
N2

1+c2 |ṽm |5/2 , (54)

where c2=(2 `2pm)5/3 (3GT3/2) −5/3, G=(4p/5) `2/(5+`5), N2=
c2/5

2 /(2G). The characteristic function can be formally expressed in terms
of a Meijer G function (47) (not shown). For our numerical results we used
the numerical Fourier transform of Eq. (54) to obtain Waeq(k).

(iii) Case 3

f(ṽm)=
N3

(1+C3 ṽ2
m)5/4 (55)
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where C3={C[1/4] C[5/2] `2m 3−1T−1
3/2C−1(3/4)]}4/3, N3=0.75T3/2 ×

C−1(5/2)(2pm)−1/2 C5/4
3 . The characteristic function is

f̄(k)=N3C−7/8
3

21/4
`p

C( 5
4)

|k|3/4 K3/4
1 |k|

`C3

2 , (56)

where K3/4 is the modified Bessel function of the second kind.

(iv) Case 4 the Lévy PDF with index 3/2 whose Fourier pair is

f̄(k)=exp 5−
T3/2 |k|5/2

`m C(5/2)
6 . (57)

The corresponding PDF is also called Holtsmark PDF.
The |ṽm | Q . behavior of the PDFs (52)–(57) is

f(ṽm) ’
3T3/2

4 `2pm
|ṽm |−5/2, (58)

hence the small k behavior of the characteristic function is

f̄(k) ’ 1 −
T3/2 |k|3/2

`m C(5/2)
. (59)

According to our results in previous section the velocity PDFs
Eqs. (52)–(54) belong to the domain of attraction of the Lévy type of equi-
librium

lim
E Q 0

Waeq(k)=exp 5−
T3/223/2

`M 3C(5/2)
|k|3/26 . (60)

Namely, Weq(VM) is the Lévy PDF with index 3/2 also called the
Holtsmark PDF.

Similar to the Maxwellian case, numerically exact solution are
obtained, in k space using Eq. (22) with finite n. For example for the power
law velocity PDF Eq. (55) we use

Waeq(k) 4 exp 3 C
n

i=1
log 5 N3

C7/8
3

``2 p

C(5/4)
|k|3/4 11 − E

1+E
23(n − i)/4 1 2E

1+E
23/4

× K3/4
111 − E

1+E
2n − i

|k|
2E

1+E
(C3)−1/2264 , (61)

Stable Equilibrium Based on Lévy Statistics 1555



-4 -2 0 2 4
k

0

0.5

1

W
eq

(k
)

Fig. 3. The equilibrium characteristic function Waeq(k), for the case when velocities of bath
particles are distributed according to a power law with a=3/2. Four types of bath particles
characteristic functions are considered: (i) the generalized Hyper-geometric function Eq. (52)
(squares), (ii) the Meijer G function Eq. (54), (circles), (iii) Bessel function Eq. (55), (triangles),
and (iv) the Holtsmark function Eq. (57) (diamonds). For all these cases, the equilibrium
characteristic function Waeq(k) is well approximated by the Lévy characteristic function;
the solid curve Waeq(k)=exp(− 23/2 |k|3/2/3). For the numerical results we used: M=1,
Ta=C(5/2), E=5e − 5, and n=1e6.

where we fix E and T3/2 and increase n until a stationary solution is
obtained.

In Fig. 3 we show Waeq(k) obtained using numerically exact solution
based on the four PDFs Eqs. (52), (54), (55), and (57). The exact solutions
are in good agreement with the theoretical prediction Eq. (60). Thus,
similar to the Maxwellian case, the exact shape of the equilibrium distribu-
tion does not depend on the details of the velocity PDF of the bath par-
ticles (besides a and Ta of course).

We note that the convergence towards the stable equilibrium was
found to be slow if compared with the Gaussian case. For example for the
Bessel function Eq. 56 and for E=1e − 6, I obtained (what I judge as
reasonable) convergence only when n > 3e6 ( for − 4 < k < 4). The conver-
gence rate to equilibrium depends on k, and as expected is faster for small
values of k.

We also consider the marginal case a=1, which marks the transition
from finite O|ṽm |P for a > 1 to infinite value of O|ṽm |P for a < 1. We con-
sidered the velocity PDF

f(ṽm)=
1

2(1+|ṽm |)2 . (62)
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Fig. 4. The equilibrium characteristic function, for a case when the velocity of the bath par-
ticles is a power law with a=1 Eq. (62). We use E=0.01 (squares), E=0.001 (diamonds),
E=0.0005 (circles). As E approaches zero, number of collisions needed to reach an equilibrium
becomes very large and then a Lévy type of thermal equilibrium is obtained: the solid curve
Waeq(k)=exp(−p |k|/2). Note the logarithmic scale of the figure.

The characteristic function is expressed in terms of a Meijer G function
using Mathematica (47)

f̄(k)=
1

`p
G31

00
1k2

4
: 0
0, 1

2 , 1
2 . (63)

The small k behaves of the characteristic function is f̄(k)=1 − p |k|/2 · · · .
According to the theory in the limit E Q 0

Waeq(k)=exp(−p |k|/2). (64)

Thus the velocity PDF of the tracer particle M is Lorentzian. As men-
tioned in this case the equilibrium obtained is independent of mass M. In
Fig. 4 we show the numerically exact solution of Waeq(k) for several mass
ratios E. As E Q 0 we obtain the predicted Lévy type of equilibrium.

6. SCALING APPROACH: THE RELEVANT SCALE IS ENERGY

We now return to the energy scaling approach. We assume that the
statistical properties of the bath particles velocities can be characterized
with an energy scale T. Since T, m, and ṽm are the only variables describing
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the bath particles. The PDF of velocities of bath particles is given by
Eq. (1). We also assume that f(ṽm) is an even function, as expected from
symmetry. The scaling assumption made in Eq. (1) is very natural, since the
total energy of bath particles is nearly conserved, i.e., the energy transfer to
the single heavy particle being much smaller than the total energy of the
bath particles.

6.1. Lévy Velocity Distribution

Now we assume a power law behavior of f(ṽm) i.e., q(x) 3 |x|−(1+a)

when |x| Q . and 0 < a < 2, where q(x) is the scaling function defined in
Eq. (1). This scaling function satisfies the normalization condition

F
.

−.

q(x) dx=1. (65)

For this power law case the variance of the bath particles velocity is infi-
nite. For this case the bath particle characteristic function is

f̄(k)=1 −
qa

C(1+a)
1T

m
2a/2

|k|a+
qb

C(1+b)
1T

m
2b/2

|k|b+o(|k|b) (66)

where a < b [ 2a. qa and qb are dimensionless numbers which depend of
course on q(x). Without loss of generality we may set qa=1. In Eq. (66) we
have used the assumption that f(ṽm) is even.

Using the same technique used in previous section we obtain the equi-
librium characteristic function for the tracer particle M

ln[Waeq(k)]

=˛ −
1

C(1+a)
1T

m
2a/2

g.

a (E) |k|a

+
qb

C(1+b)
1T

m
2b/2

g.

b (E) |k|b b < 2a

−
1

C(1+a)
1T

m
2a/2

g.

a (E) |k|a

+5 q2a

C(1+2a)
−

1
2C2(1+a)

61T
m
2a

g.

2a(E) |k|2a b=2a.

(67)
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Taking the small E limit the following expansions are found, if b < 2a

ln[Waeq(k)] ’ −
2a − 1

aC(1+a)
1 T

M
2a/2 |k|a

E1 − a/2

+
qb2b − 1

2C(1+b)
1 T

M
2b/2 |k|b

E1 − b/2+o(|k|)b, (68)

if b=2a

ln[Waeq(k)] ’ −
2a − 1

aC(1+a)
1 T

M
2a/2 |k|a

E1 − a/2

+5 qb

C(1+b)
−

1
2C2(1+a)

61 T
M
2a 22a − 1

2a

|k|2a

E1 − a
+o(|k|2a). (69)

Thus for example if b=2 the leading term in Eq. (68) scales with E accord-
ing to Ea/2 − 1

Q ., while the second term scales like E0. Thus from Eqs. (68)
and (69) we see when E is small and k not too large, we may neglect the
second and similarly higher order terms. This yields the equilibrium of the
test particle which is a stretched exponential in k space

Waeq(k) ’ exp 5−
2a − 1

aC(1+a)
1 T

M
2a/2 |k|a

E1 − a/2
6 , (70)

and hence the equilibrium velocity distribution of the tracer particle is Lévy
stable. We note that for a ] 2 the equilibrium Eq. (70) depends on E, and
hence on the mass of the bath particles m. While for the Maxwell case
a=2, the equilibrium is independent of the coupling constant E. This
difference between the Lévy equilibrium and the Maxwell equilibrium is
related to the conservation of energy and momentum during a collision
event, and to the fact that the energy of the particles is quadratic in their
velocities. The asymptotic behavior Eq. (70) is now demonstrated using
numerical examples.

6.2. Numerical Examples: Lévy Equilibrium

We consider three types of bath particle velocity PDFs, for large
values of |vm | Q . these PDFs exhibit f(ṽm) 3 |ṽm |−5/2, which implies
a=3/2.
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(i) Case 1

f(ṽm)=
N1

11+c =m
T

|ṽm |2
5/2

, (71)

where the normalization constant is N1=c3 `m/T/4 and c=32/3/2. The
Fourier transform of this equation can be expressed in terms of a Hyper-
geometric function as in Eq. (53).

(ii) Case 2,

f(ṽm)=
N2

11+
mṽ2

m

2T2
25/4

(72)

for − . < ṽm < .. The normalization constant is

N2== m

2T2
C( 1

4)

4 `p C( 3
4)

, (73)

and

T2=
2

p2/3
5C( 3

4)
C( 1

4)
64/3

T. (74)

The bath particle characteristic function is

f̄(k)=
21/4N `p

C(5/4) 1 m

2T2
27/8

|k|3/4 K3/4
1k `2T2

`m
2 , (75)

which yields the small k expansion

f̄(k)=1 − 2.34565 1T2

m
23/4

|k|3/2+2
T2

m
k2+ · · · , (76)

or using Eq. (74) f̄(k)=1 − (T/m)3/4 |k|3/2/C(5/2)+ · · · .
(iii) Case 3, the bath particle velocity PDF is a Lévy PDF with index

3/2, whose characteristic function is

f̄(k)=exp 5−1T
m
23/4 |k|3/2

C(5/2)
6 . (77)
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Fig. 5. We show the equilibrium characteristic function of the tracer particle, using the
energy scaling approach. Numerically exact solution of the problem are obtained using three
long tailed bath particle velocity PDFs (i) Eq. (71) squares, (ii) Eq. (72) triangles, (iii) Eq. (77)
diamonds. The tracer particle equilibrium is well approximated by the Lévy characteristic
function the solid curve; Waeq(k) ’ exp(− 2.211 | k

E1/6
|3/2). For the numerical results we used

T=4.555, E=1e − 5, and M=1.

According to our theory these power law velocity PDFs, yield a Lévy
equilibrium for the tracer particle, Eq. (70). In Fig. 5 we show numerically
exact solution of the problem for cases (1)–(3). These solutions show a
good agreement between numerical results and the asymptotic theory. The
Lévy equilibrium for the tracer particle is not sensitive to precise shape of
the velocity distribution of the bath particle, and hence like the Maxwellian
equilibrium is stable.

7. SUMMARY AND DISCUSSION

The main points of this manuscript and some possible extensions are:

(i) Our work shows that if a heavy tracer particle is inserted in a
steady state bath, the tracer particle reaches a stable equilibrium Eqs. (43)
and (70). The exponent describing the power law tail of the bath particle
velocity distribution yields the Lévy exponent a.

(ii) The domain of attraction of the stable Lévy type of equilibrium
was clarified. The problem is different from the classical mathematical
problem of summation of independent identically distributed random
variables. For example, a case where the equilibrium is a convolution of the
Lévy and the Gaussian distributions was briefly pointed out.
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(iii) Kinetic models can be used to obtain stable power law general-
izations of the Maxwell–Boltzmann equilibrium, without assuming inelastic
collisions.

(iv) I recently showed (32) that Lévy equilibrium is obtained also from
a nonlinear Boltzmann equation approach, for a driven Maxwell gas in the
elastic limit.

(v) It is worth while checking if Lévy equilibrium can be obtained
also from other kinetic models. Specifically our model assumes (a) a
uniform collision rate, (b) dynamics of the tracer particle is driven by
energy supply from bath particles, and (c) the collisions are elastic. It
would be interesting to check what happens when these assumptions are
relaxed.

(vi) The thermodynamic approach yields a physical result only for
1 < a. Within this approach the equilibrium of the tracer particle is inde-
pendent of the mass of the bath particles. The approach is based on a gen-
eralized temperature concept.

(vii) The energy scaling approach is based on standard temperature
concept T. However the temperature does not yield the averaged energy of
the heavy test particle (which is infinite), instead it yields a measure of the
width of the velocity distribution. Within this approach the Lévy equilib-
rium for the tracer particle depends on the mass of the bath particles. Thus
unlike ordinary equilibrium statistical mechanics the velocity distribution
of the heavy particle depends on the details of the interaction with the
bath.

APPENDIX A

In this Appendix the solution of the equation of motion for Wa (k, t)
Eq. (7) is obtained, the initial condition is Wa (k, 0)=exp[ikVM(0)]. The
inverse Fourier transform of this solution yields W(VM, t) with initial con-
dition W(VM, 0)=d[VM − VM(0)]. Such a solution is obtained in Eq. (14),
for the special case when f(ṽm) is a Lévy PDF.

Introduce the Laplace transform

Wa (k, s)=F
.

0
Wa (k, t) exp(− st) dt. (78)

Using Eq. (7) we have

sWa (k, s) − e ikVM(0)=−RWa (k, s)+RWa (kt1, s) f̄(kt2), (79)
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this equation can be rearranged to give

Wa (k, s)=
e ikVM(0)

R+s
+

R
R+s

Wa (kt1, s) f̄(kt2). (80)

This equation is solved using the following procedure. Replace k with kt1

in Eq. (80)

Wa (kt1, s)=
e ikt1VM(0)

R+s
+

R
R+s

Wa (kt2
1, s) f̄(kt2t1). (81)

Equation (81) may be used to eliminate Wa (kt1, s) from Eq. (80), yielding

Wa (k, s)=
e ikVM(0)

R+s
+

Re ikt1VM(0)

(R+s)2 f̄(kt2)

+
R2

(R+s)2 Wa (k2t1, s) f̄(kt2t1) f̄(kt2). (82)

Replacing k with kt2
1 in Eq. (80)

Wa (kt2
1, s)=

e ikt
2
1VM(0)

R+s
+

R
R+s

Wa (kt3
1, s) f̄(kt2t2

1). (83)

Inserting Eq. (83) in Eq. (82) and rearranging

Wa (k, s)=
e ikVM(0)

R+s
+

Re ikt1VM(0)

(R+s)2 f̄(kt2)+
R2e ikt

2
1VM(0)

(R+s)3 f̄(kt2t1) f̄(kt2)

+1 R
R+s

23

Wa (kt3
1, s) f̄(kt2t2

1) f̄(kt2t1) f̄(kt2). (84)

Continuing this procedure yields

Wa (k, s)=
e ikVM(0)

R+s
+ C

.

n=1

Rn

(R+s)n+1 e ikt
n
1VM(0)Pn

i=1 f̄(ktn − i
1 t2). (85)

Inverting to the time domain, using the inverse Laplace s Q t transform
yields Eq. (8). The solution Eq. (8) may be verified by substitution in
Eq. (7).
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